목록개발/Data Science (6)
속도 < 방향
실전 시계열 분석을 보며 정리했습니다. [Last updated : 2022-09-14] 정의 시계열 분석은 시간 순서대로 정렬된 데이터에서 의미있는 요약과 통계 정보를 추출하는 것이다. 과거 행동 진단뿐만 아니라 미래 행동 예측에도 사용된다. 1.1 다양한 응용 분야의 시계열 역사 '과거가 미래에 어떤 영향을 주는가?' 와 같은 인과관계를 다루는 질문으로 시계열 분석에 대해 일축할 수 있다. 1.1.1 시계열 문제로서의 의학 존 그란트(John Graunt)는 1500년대 초반부터 사망 기록 연구를 시작하여, 특정 연령대에 있는 사람이 다음 생일 전에 사망할 확률을 구했다. 그란트는 처음으로 사람의 건강을 문서에 기록한 통계학자이다. 하지만 당시에는 찬밥 신세를 받았다. 그 이유는 당시 생리학, 해부학..
Chapter 5. 회귀 모델은 시계열 y 를 예측할 때 이것이 다른 시계열 x와 선형 관계가 있다고 가정하는 것이 기본 개념이다. 목표 예상변수(forecast variable) y 는 회귀선, 종속변수, 피설명 변수라고 부르기도 한다. 예측변수(predictor variable) x는 회귀자, 독립변수, 설명 변수라고 부르기도 한다. 5.1 선형 모델 단순 선형 회귀 회귀 모델이 목표 예상 변수 y 와 하나의 예측 변수 x 사이의 선형 관계를 다루는 경우가 가장 간단하다. β0와 β1는 각각 직선의 절편과 기울기를 나타내며, β0은 x가 0일 때 예측되는 y의 값을 나타낸다. β1는 x가 1만큼 증가했을 때 예측되는 y의 변화를 의미한다. 여기서 주목해야 할 것은 관측값이 직선 위에 있는 것이 아니라..
과거 데이터가 전혀 없거나 완전히 새로우면서 독특한 시장 상황 등 특수한 상황에서 판단 예측 (judgmental forecasting) 을 사용할 수밖에 없다. 1) 이용할 수 없는 데이터가 없어 통계 기법을 적용할 수 없고 판단 예측으로만 접근이 가능한 경우 2) 이용할 수 있는 데이터가 있고 통계적인 예측값을 생성했고 판단을 이용하여 조정하는 경우| 3) 이용할 수 있는 데이터가 있고 통계적인 예측값과 판단 예측값을 독립적으로 내고 그 둘을 결합하는 경우 위와 같은 경우에 판단 예측을 사용할 수 있으며 일반적으로 통계적인 예측값은 판단만 이용하여 예측한 값보다 뛰어나다. 4.1 한계점에 주의하기 판단 예측값은 주관적이라 편견이나 한계점에 노출될 수밖에 없다. 사람의 인지력에 크게 의존하기 때문에 일..
Forecasting : Principles and Practice 온라인 교재를 보며 참고하였습니다. Chapter 3. 예측을 하는 데 있어 유용한 도구들과 예측 작업을 단순하게 만드는 법, 예측 기법에서 이용 가능한 정보를 적절하게 사용하게 사용했는지 확인하는 법, 예측구간(prediction interval)을 계산하는 기법 등을 살펴볼 것이다. 3.1 몇 가지 단순한 예측 기법 평균 기법 예측한 모든 미래의 값은 과거 데이터의 평균과 같다. 과거 데이터를 y1,…,yTy1,…,yT라고 쓴다면, 예측값을 다음과 같이 쓸 수 있다. meanf(y, h) # 시계열, 예측범위 단순 기법(naïve method) 단순 기법에서는 모든 예측값을 단순하게 마지막 값으로 둔다. 이 기법은 금융 시계열을 다룰..
Forecasting : Principles and Practice 온라인 교재를 보며 참고하였습니다. Chapter 2. 데이터 분석 작업에서 가장 먼저, 많이 하는 것이 데이터 시각화다. 그래프를 통해 패턴, 관측값, 변수에 따른 변화, 변수 사이의 관계 등 데이터의 많은 특성을 파악할 수 있다. 데이터 시각화 과정은 예측 기법에 반드시 포함되어야 한다. 2.1 ts객체 시계열이란 각 숫자가 기록된 시간에 관한 정보가 있는 숫자들의 목록이다. R에서는 이러한 정보를 ts 객체로 저장할 수 있다. y
Forecasting : Principles and Practice 온라인 교재를 보며 참고하였습니다. Chapter 1. 우리는 많은 경우에 예측을 한다. 비단 현대사회뿐만 아니라 수천년전부터 사람들은 예측을 하는 것에 관심이 많았다. 고대 바빌로니아의 예측가는 썩은 양의 간에서 구더기의 분포를 미래를 예언하기도 했다. 이처럼, 계획을 세우는 데 있어 예측은 큰 도움이 된다. 예측가능성은 다음과 같은 요인에 의존하게 된다. 영향을 주는 요인을 얼마나 잘 이해할 수 있는지 사용할 수 있는 데이터가 얼마나 많은지 예측이 우리가 예측하려는 것에 영향을 줄 수 있는지 여부 전기 수요 예측의 경우는 위의 조건이 모두 맞기 때문에 상당히 정확한 편이다. 하지만, 환율 예측의 경우에는 2번의 조건만 만족하기 때문에..